NUMBER SYSTEM

GRADE : IX

SUBJECT : MATHEMATICS

I. Multiple Choice questions:

1) Every rational number is \qquad
c)Integer d) Real number
a) Whole number
b) Natural number
2) Which of the following is true ?
a) Every irrational number is a real number
b) Every real number is an Irrational number
c) Every real number is a rational number
d)Every point on the number line is of the form \sqrt{m}, where m is a natural number
3)The number whose decimal expansion is non-terminating and non-recurring is an \qquad
a) Rational number
b) Irrational number
c) Whole number
d) Composite number
3) Find the odd one out of the following:
a) $\sqrt{32} \times \sqrt{2}$
b) $\frac{\sqrt{27}}{\sqrt{3}}$
c) $\sqrt{72} \times \sqrt{8}$
d) $\frac{\sqrt{54}}{\sqrt{18}}$
5)The value of $\sqrt[4]{\sqrt[3]{2^{2}}}$ is equal to \qquad
a) $2^{-1 / 6}$
b) 2^{-6}
b) 2^{6}
c) $2^{1 / 6}$
6)Which of the following statement is false ?
a)The square root of -25 is 5
b) $\sqrt{25}=5$
c) $-\sqrt{25}=-5$
d) $\sqrt{25}= \pm 5$
7)The smallest rational number by which $1 / 3$ should be multiplied so that its decimal expansion terminates with one place of decimal is \qquad
a) $\frac{1}{10}$
b) $\frac{3}{10}$
c) 3
d) 30
4) If $8^{x}=\frac{64}{2^{x}}$, then the value of x is \qquad
a) 3
b) 1
c) $\frac{1}{2}$
d) $\frac{3}{2}$
5) $(0.001)^{1 / 3}$ is equal to \qquad
a) 0.1
b) 0.001
c) 0.01
d) 0.0001
6) If $\mathrm{a}=2$ and $\mathrm{b}=3$ then the value of b^{a} is \qquad
a) 4
b) 9
c) 2
d) 3
II. From the bowl of numbers, Pick a number and categorize them as rational or irrational :

Rational Numbers	Irrational Numbers

III. Fill in the Blanks:

1)The rational number equal to its negative is its
2) If x is the reciprocal of y, then the reciprocal of y is \qquad
3)The value of $2^{55} \times 2^{60}-2^{97} \times 2^{18}$ is \qquad
4) If $\left\{(2)^{3 m-1}+10\right\} \div 7=6$, then $\mathrm{m}=$ \qquad
5) The Value of $256^{0.16} \times 256^{0.09}$ is \qquad
6)The simplest rationalising factor of $\sqrt[3]{500}$ is \qquad
7) If $x=7+4 \sqrt{3}$ and $x y=1$ then $\frac{1}{x^{2}}+\frac{1}{y^{2}}=$ \qquad
8) If $x=\sqrt[3]{2+\sqrt{3}}$, then $x^{3}+\frac{1}{x^{3}}=$ \qquad
9)The value of $\frac{\sqrt{48}+\sqrt{32}}{\sqrt{27}+\sqrt{18}}$ is \qquad
10) If $\sqrt{2}=1.4142$, then $\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}=$

IV. State whether the following statements are true or false:

1. $\frac{2}{\sqrt{5}}$ is a rational number
2. There are infinitely many integers between any two integers
3. Every integer is a rational number.
4. 0.33033003300033 ... is an Irrational number
5. The value of m for which $\left\{\frac{6}{13}\right\}^{-4} \times\left\{\frac{6}{13}\right\}^{3 m}=\left\{\frac{6}{13}\right\}^{5}$ is -3
V. Answer each question. Use your answer to navigate through the maze:

VI. Complete the Cross-word Puzzle using the clues given:

Across :

3. Rational numbers have only two choices either they are terminating or nonterminating and \qquad decimal
4. The first person to discover the numbers which were not rational
5. The number $(\sqrt{3}+1)(\sqrt{3}-1)$ is
6. Counting numbers are called

Down:

1.Non-terminating, non-recurring decimal expression
2.The set of positive and negative number is
4.Number of the form p / q
5.Who was the first to compute digits in the decimal expansion of π (Greek genius)

VII Match the Exponent in Column I to an exponent in Column II
COLUMN I COLUMN II

